mahout面试题?

时间:2024-04-23 11:35 人气:0 编辑:admin

一、mahout面试题?

之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。

训练数据:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

检测数据:

sunny,hot,high,weak

结果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代码调用Mahout的工具类实现分类。

基本思想:

1. 构造分类数据。

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

接下来贴下我的代码实现=》

1. 构造分类数据:

在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。

数据文件格式,如D1文件内容: Sunny Hot High Weak

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 测试代码

*/

public static void main(String[] args) {

//将训练数据转换成 vector数据

makeTrainVector();

//产生训练模型

makeModel(false);

//测试检测数据

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean参数是,是否递归删除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成训练模型失败!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("检测数据构造成vectors初始化时报错。。。。");

System.exit(4);

}

}

/**

* 加载字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用贝叶斯算法开始分类,并提取得分最好的分类label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("检测所属类别是:"+getCheckResult());

}

}

二、webgis面试题?

1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。

WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。

2. 请谈谈您在WebGIS开发方面的经验和技能。

我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。

3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。

在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。

4. 请谈谈您对WebGIS未来发展的看法和期望。

我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。

三、freertos面试题?

这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。

四、paas面试题?

1.负责区域大客户/行业客户管理系统销售拓展工作,并完成销售流程;

2.维护关键客户关系,与客户决策者保持良好的沟通;

3.管理并带领团队完成完成年度销售任务。

五、面试题类型?

你好,面试题类型有很多,以下是一些常见的类型:

1. 技术面试题:考察候选人技术能力和经验。

2. 行为面试题:考察候选人在过去的工作或生活中的行为表现,以预测其未来的表现。

3. 情境面试题:考察候选人在未知情境下的决策能力和解决问题的能力。

4. 案例面试题:考察候选人解决实际问题的能力,模拟真实工作场景。

5. 逻辑推理题:考察候选人的逻辑思维能力和分析能力。

6. 开放性面试题:考察候选人的个性、价值观以及沟通能力。

7. 挑战性面试题:考察候选人的应变能力和创造力,通常是一些非常具有挑战性的问题。

六、cocoscreator面试题?

需要具体分析 因为cocoscreator是一款游戏引擎,面试时的问题会涉及到不同的方面,如开发经验、游戏设计、图形学等等,具体要求也会因公司或岗位而异,所以需要根据实际情况进行具体分析。 如果是针对开发经验的问题,可能会考察候选人是否熟悉cocoscreator常用API,是否能够独立开发小型游戏等等;如果是针对游戏设计的问题,则需要考察候选人对游戏玩法、关卡设计等等方面的理解和能力。因此,需要具体分析才能得出准确的回答。

七、mycat面试题?

以下是一些可能出现在MyCat面试中的问题:

1. 什么是MyCat?MyCat是一个开源的分布式数据库中间件,它可以将多个MySQL数据库组合成一个逻辑上的数据库集群,提供高可用性、高性能、易扩展等特性。

2. MyCat的优势是什么?MyCat具有以下优势:支持读写分离、支持分库分表、支持自动切换故障节点、支持SQL解析和路由、支持数据分片等。

3. MyCat的架构是怎样的?MyCat的架构包括三个层次:客户端层、中间件层和数据存储层。客户端层负责接收和处理客户端请求,中间件层负责SQL解析和路由,数据存储层负责实际的数据存储和查询。

4. MyCat支持哪些数据库?MyCat目前支持MySQL和MariaDB数据库。

5. MyCat如何实现读写分离?MyCat通过将读请求和写请求分别路由到不同的MySQL节点上实现读写分离。读请求可以路由到多个只读节点上,从而提高查询性能。

6. MyCat如何实现分库分表?MyCat通过对SQL进行解析和路由,将数据按照一定规则划分到不同的数据库或表中,从而实现分库分表。

7. MyCat如何保证数据一致性?MyCat通过在多个MySQL节点之间同步数据,保证数据的一致性。同时,MyCat还支持自动切换故障节点,从而保证系统的高可用性。

8. MyCat的部署方式有哪些?MyCat可以部署在单机上,也可以部署在多台服务器上实现分布式部署。

八、面试官奇葩面试题?

01 面试官:秋千为什么只有前后荡,没有左右荡?

内心:啊?我想把自己装成脑震荡!

正解:秋千是一种娱乐方式,没有约定俗成一定是前后荡的,毕竟跟人们的玩法、数量,甚至体重都有关系。(考察辩证法,主要是思维逻辑)

02 面试官:用一两句话,向你6岁大的侄子解释一个数据库。

内心:小屁孩比我懂得多,哪用得着我解释。

正解:一个数据库就像一个冰箱,能够装下你喜欢吃的不同零食。(考察复杂问题简单化的能力,往往客户不懂术语)

03 面试官:向日葵每天都向着太阳,难道它的脖子不痛吗?

内心:向日葵的脖子痛不痛我不知道,我只知道,我的心那一刻好痛。

正解:向日葵合理运用外界条件,让自己的葵花籽粒粒饱满,造福子孙,脖子痛点算什么。(考察日常事物的分析能力,逻辑自洽就是OK的)

04 面试官:你怎么向一位盲人形容黄色?

内心:他看不见,说明白了又有什么用?

正解:一种太阳的光线穿过树林,照在身上的感觉,暖暖的。(抽象事物的具象化,考察的是语言的表达能力)

05 面试官:头被砍掉的那一瞬间,是头觉得身体掉了,还是身体觉得头掉了?

内心:什么问题?要我试了之后再告诉你吗?

正解:这个问题很有趣,头和身体相互配合才能发挥应有的作用,所以分开的那一瞬间,两者的价值不存在了。(情景化的问题抽象化,考察的是抓取重点的能力)

06 面试官:杭州有多少个红绿灯?

内心:我又没有去过,杭州不是有智慧大脑嘛,点下鼠标不就知道了。

正解:我不能给出准确的数量,但是可通过类比估算法粗略估算一下,例如一平方公里有100个,那么100平方公里就有1万个!(考察思考困难问题的能力,重点在于拆解问题的能力。客户的需求往往是模糊的,具体拆解才能明白)

07 面试官:蝙蝠侠和超人打架,你怎么劝?

内心:劝什么劝,赶紧拿出手机拍照发朋友圈。

正解:打架往往是意见不一致引起的,那么有特异功能的人还打架,往往是因为感情的事。所以,找到女主角来劝就好啦。(考察转化问题的能力,俗称瞎扯)

08 面试官:我身上哪个洞最小?

内心:一个女同志问这样的问题不好吧。

正解:漏洞,因为任何程序都有BUG。(考察应变的能力,毕竟难以启齿的柔弱,往往是陷阱)

09 面试官:你能说出7个小矮人的名字吗?

内心:我不是白雪公主,干啥要分得那么清楚。

正解:7个小矮人的名字我确实不记得,但是我记得白雪公主不偏爱任何一个,所以我没有记住。(看起来考的记忆力,其实还是应变的能力,可以用幽默化解)

10 面试官:把你的生活写成新闻故事,你会用什么样的标题?

内心:我的生活就是一部《隐秘的角落》,确定要写成故事嘛!

正解:生活本来是平淡的,但起码有一些亮色,就是未来遇见的,都是好看的面试官。(本身问题很刁钻,考察的是综合素质,可以多运用优秀的语言组织来体现自己的不平淡)

11

面试官的第一句话不是“请介绍一下你自己!”

而是“你有什么问题问我吗?”

......

12

面试开始,彼此沉默十秒、二十秒、三十秒、一分钟。

我终于忍不住:“请问,可以开始了吗?”

面试官说:“不好意思,反应时间超过二十秒的,我们公司都不会录取,你现在该怎么办?”

......

九、求护士面试的面试试题?

常见的护士应聘面试题供你参考:

1.对自己一分钟简介2.你对护理专业的认识,你为什么要当护士?

3.当护士要具备哪些素质?

4.护理模式、护理程序5.病情观察:如考官会举例病人神志瞳孔呼吸血压等变化,让你判断。看看你理论是否扎实,是否能用到临床6.应急应变:如考官会举例皮试或药物过敏休克的例子,让你判断和处理;打错针或输错液发错药时该怎么处理;打头皮针穿刺不成功家长意见很大时你怎么处理;遇到抢救病人时抢救器械坏了怎么处理;等等等等,看看你遇到突发事故时的应急能力7.人文方面,包括你的举止,服装,谈吐等8.从现在开始算,未来的五年,你想自己成为什么样子?

(回答一定要得体,根据你的能力和经历。

对工作拥有具体期望与目标的人,通常成长较快。

应征者针对这类问题可以回答:”我的目标是……,为了达到这个目标,必须努力充实自己……,而我拥有这样的自信。 http://www.aiyijob.com/zixun/3529.html”或”这是我从小到大的理想……”。)

9.假若你在输液过种中,两次穿失败.你怎么应该怎么办?10.告诉我,你事业的目标?

十、文案策划面试题?

1好文案的第一道门槛做一个好文案很难,要找到一个好文案也很难,所以,在您对加入旭日?因赛表示兴趣之后,我摆出了这套题目作为入职的第一道门槛,我不是要强悍地说,它就是测试一位好文案的标准,好文案决非由一时半会的检测就可以显现,但我寄希望于能了解我所能触摸的您作为广告文案的感觉,虽然很可能这已经有所局限,但别无良途。摆在台面的题目是一道门槛,其实还有另外一道门槛在背后,——这是一道开放性试题,我希望你能独立完成它,经受住另一种考验。一、 谈广告。说说您近来看到的最喜欢的两则广告,最好是一则平面一则影视。请用文字描述它,并说说您喜欢它的原因。

2二、巧手联珠。看来毫不相关的两类事物,可以经由文案的巧思将它们入情入理的联系起来,下面看你的了!(写一句话/字数不要太多)1、 妈祖+猛男2、 咖啡+豪猪3、 加州阳光+忧郁的黑眼圈

3二、 多面写手。广告文案经常要潜入不同目标对象的心灵去写作,针对不同的目标群有不同的句法、遣词和风格,请以某一种商品为广告对象(选你最熟悉的,但5个小题要求写同一种商品),分别以不同风格撰写一段文案,包括标题、正文。哦,不知道卖点、品牌个性、创意概念?别问我,如果你熟悉这些道道,你就自己想一想呗,如果不熟悉,怎么办?我也不知道。1、 城市街头少年2、 意识形态语言(虽然不属目标对象,但很多人都喜欢这类文字,其对象可能是:时尚文化青年)3、 小资女性4、 中产阶级5、 网虫

4三、 用一个画面表现:萎靡的想像。画一画吧,画得差也不要紧,关键是想得妙。

5四、 也写诗。有的文案太喜欢写诗,有的又从来不写。但我认为文案还是应该会写。——最起码那些长短句,很为美术设计版式时所钟爱。:)为了便于评判,我还是给您命个题:城市的颜色

6五、 短文高手。字数限制250~350字。都市拜物教好了,您差不多该完成这些东西了,谢谢您的辛苦劳动。请将试卷寄给我的联系人。我会在一周内给您答复。旭日?因赛立志做中国最好的传播代理商,希望有机会我们能一起为之奋斗。

相关资讯
热门频道

Copyright © 2024 招聘街 滇ICP备2024020316号-38