50万左右。阿里云算法工程师人才非常紧缺,人工智能领域、IT软件工程领域和金融系统等部门都有需求,工资福利待遇都很高,年薪都在50万左右,还有各种福利待遇。
挺好的,阿里巴巴这么大的公司,作为里面的算法工程师,福利待遇肯定会特别高。
主要是聊基础算法知识和代码题。
1.算法工程师要求很高的数学水平和逻辑思维。
其实语言是次要的,语言只是表达的方式而已。
2 你想成为算法工程师还需要一定的英文水准,因为看中文书你完全体会不到原滋味。
3 不要太拘泥于教材。
蛮多人都在问阿里巴巴常见的面试问题,我就整理一些出来,希望能帮到大家一些吧。
面试时候问的比较多的少不了工作规划,所以面试前做个3-5年的工作规划,越详细约好,让人觉得你是真心想要加入公司,还有多多了解一下公司信息,因为会问你如何看待企业文化、发展前景什么的,还有准备一下个人经历,什么最成功的的事,遇到过的最大的困难之类的。
阿里大数据算法一直是业界的热门话题之一。作为全球领先的科技公司之一,阿里巴巴一直致力于在大数据和人工智能领域取得突破性进展。其强大的数据算法在各个业务领域发挥着重要作用,为用户提供个性化的服务和优质的体验。
阿里巴巴的数据算法发展可以追溯到早期的大数据技术研究阶段。随着公司业务的不断扩张和用户规模的增长,阿里巴巴不断加大对大数据算法研究的投入,致力于提升数据处理和分析的能力,实现更高效的数据挖掘和应用。
随着互联网行业的快速发展,阿里巴巴不断优化和改进其数据算法,推动了公司的业务创新和发展。通过不懈的努力和持续的创新,阿里大数据算法获得了广泛的认可和应用,成为公司发展的重要支撑。
阿里大数据算法在商业应用中发挥着重要作用,为企业提供了更准确、更智能的数据分析和决策支持。通过对海量数据的深度挖掘和分析,阿里大数据算法可以帮助企业发现潜在的商机,优化运营效率,提升用户体验。
在电商领域,阿里大数据算法可以通过智能推荐系统为用户提供个性化的商品推荐,帮助用户更快速地找到符合自身需求的产品,提升购物体验。同时,阿里大数据算法也可以通过数据分析和预测,帮助企业做出更明智的营销决策,实现精准营销和客户维护。
总的来说,阿里大数据算法在当今数字化时代扮演着至关重要的角色,对企业发展和用户体验产生着深远的影响。作为全球科技领导者之一,阿里巴巴将继续致力于数据算法研究和创新,不断提升数据处理和分析能力,为用户和合作伙伴创造更大的价值。
在当今数字化时代,大数据已成为各行各业不可忽视的重要资产。对于数据科学家和数据分析师来说,掌握大数据算法是至关重要的技能之一。随着数据量的不断增长和复杂性的提升,大数据算法的应用范围也越来越广泛。
大数据算法是指为处理大规模数据而设计的一组算法和技术。在处理海量数据时,传统的算法可能无法有效地运行,因此需要专门针对大数据量级和特点设计的算法来进行处理。
大数据算法的重要性在于它可以帮助企业从海量数据中提取出有用的信息、模式和见解,为决策提供支持。通过运用大数据算法,企业可以更好地理解客户需求、优化产品设计、改进营销策略,从而提升竞争力。
下面列举了一些常见的大数据算法面试题,希望能够帮助准备面试的同学更好地理解和掌握相关知识:
为了更好地准备大数据算法面试,以下是一些建议:
大数据算法在当今信息爆炸的时代扮演着至关重要的角色,对于从事数据分析和数据科学相关工作的人员来说,掌握大数据算法是必备的技能之一。通过不断学习、实践和应用,相信每个人都可以在大数据算法领域取得优异的成绩。
又到安利Python的时间, 最终代码不超过30行(优化前),加上优化也不过40行。
第一步. 构造Trie(用dict登记结点信息和维持子结点集合):
-- 思路:对词典中的每个单词,逐词逐字母拓展Trie,单词完结处的结点用None标识。
def make_trie(words):
trie = {}
for word in words:
t = trie
for c in word:
if c not in t: t[c] = {}
t = t[c]
t[None] = None
return trie
第二步. 容错查找(容错数为tol):
-- 思路:实质上是对Trie的深度优先搜索,每一步加深时就消耗目标词的一个字母。当搜索到达某个结点时,分为不消耗容错数和消耗容错数的情形,继续搜索直到目标词为空。搜索过程中,用path记录搜索路径,该路径即为一个词典中存在的词,作为纠错的参考。
-- 最终结果即为诸多搜索停止位置的结点路径的并集。
def check_fuzzy(trie, word, path='', tol=1):
if word == '':
return {path} if None in trie else set()
else:
p0 = set()
if word[0] in trie:
p0 = check_fuzzy(trie[word[0]], word[1:], path+word[0], tol)
p1 = set()
if tol > 0:
for k in trie:
if k is not None and k != word[0]:
p1.update(check_fuzzy(trie[k], word[1:], path+k, tol-1))
return p0 | p1
简单测试代码 ------
构造Trie:
words = ['hello', 'hela', 'dome']
t = make_trie(words)
In [11]: t
Out[11]:
{'d': {'o': {'m': {'e': {'$': {}}}}},
'h': {'e': {'l': {'a': {'$': {}}, 'l': {'o': {'$': {}}}}}}}
容错查找:
In [50]: check_fuzzy(t, 'hellu', tol=0)
Out[50]: {}
In [51]: check_fuzzy(t, 'hellu', tol=1)
Out[51]: {'hello'}
In [52]: check_fuzzy(t, 'healu', tol=1)
Out[52]: {}
In [53]: check_fuzzy(t, 'healu', tol=2)
Out[53]: {'hello'}
似乎靠谱~
---------------------------分--割--线--------------------------------------
以上是基于Trie的approach,另外的approach可以参看@黄振童鞋推荐Peter Norvig即P神的How to Write a Spelling Corrector
虽然我已有意无意模仿P神的代码风格,但每次看到P神的源码还是立马跪...
话说word[1:]这种表达方式其实是有渊源的,相信有的童鞋对(cdr word)早已烂熟于心...(呵呵
------------------------分-----割-----线-----二--------------------------------------
回归正题.....有童鞋说可不可以增加新的容错条件,比如增删字母,我大致对v2方法作了点拓展,得到下面的v3版本。
拓展的关键在于递归的终止,即每一次递归调用必须对参数进行有效缩减,要么是参数word,要么是参数tol~
def check_fuzzy(trie, word, path='', tol=1):
if tol < 0:
return set()
elif word == '':
results = set()
if None in trie:
results.add(path)
# 增加词尾字母
for k in trie:
if k is not None:
results |= check_fuzzy(trie[k], '', path+k, tol-1)
return results
else:
results = set()
# 首字母匹配
if word[0] in trie:
results |= check_fuzzy(trie[word[0]], word[1:], path + word[0], tol)
# 分情形继续搜索(相当于保留待探索的回溯分支)
for k in trie:
if k is not None and k != word[0]:
# 用可能正确的字母置换首字母
results |= check_fuzzy(trie[k], word[1:], path+k, tol-1)
# 插入可能正确的字母作为首字母
results |= check_fuzzy(trie[k], word, path+k, tol-1)
# 跳过余词首字母
results |= check_fuzzy(trie, word[1:], path, tol-1)
# 交换原词头两个字母
if len(word) > 1:
results |= check_fuzzy(trie, word[1]+word[0]+word[2:], path, tol-1)
return results
好像还是没有过30行……注释不算(
本答案的算法只在追求极致简洁的表达,概括问题的大致思路。至于实际应用的话可能需要很多Adaption和Tuning,包括基于统计和学习得到一些词语校正的bias。我猜测这些拓展都可以反映到Trie的结点构造上面,比如在结点处附加一个概率值,通过这个概率值来影响搜索倾向;也可能反映到更多的搜索分支的控制参数上面,比如增加一些更有脑洞的搜索分支。(更细节的问题这里就不深入了逃
----------------------------------分-割-线-三----------------------------------------
童鞋们可能会关心时间和空间复杂度的问题,因为上述这种优(cu)雅(bao)的写法会导致产生的集合对象呈指数级增加,集合的合并操作时间也指数级增加,还使得gc不堪重负。而且,我们并不希望搜索算法一下就把所有结果枚举出来(消耗的时间亦太昂贵),有可能我们只需要搜索结果的集合中前三个结果,如果不满意再搜索三个,诸如此类...
那肿么办呢?................是时候祭出yield小魔杖了゚ ∀゚)ノ
下述版本姑且称之为lazy,看上去和v3很像(其实它俩在语义上是几乎等同的
def check_lazy(trie, word, path='', tol=1):
if tol < 0:
pass
elif word == '':
if None in trie:
yield path
# 增加词尾字母
for k in trie:
if k is not None:
yield from check_lazy(trie[k], '', path + k, tol - 1)
else:
if word[0] in trie:
# 首字母匹配成功
yield from check_lazy(trie[word[0]], word[1:], path+word[0], tol)
# 分情形继续搜索(相当于保留待探索的回溯分支)
for k in trie:
if k is not None and k != word[0]:
# 用可能正确的字母置换首字母
yield from check_lazy(trie[k], word[1:], path+k, tol-1)
# 插入可能正确的字母作为首字母
yield from check_lazy(trie[k], word, path+k, tol-1)
# 跳过余词首字母
yield from check_lazy(trie, word[1:], path, tol-1)
# 交换原词头两个字母
if len(word) > 1:
yield from check_lazy(trie, word[1]+word[0]+word[2:], path, tol-1)
不借助任何容器对象,我们近乎声明式地使用递归子序列拼接成了一个序列。
[新手注释] yield是什么意思呢?就是程序暂停在这里了,返回给你一个结果,然后当你调用next的时候,它从暂停的位置继续走,直到有下个结果然后再暂停。要理解yield,你得先理解yield... Nonono,你得先理解iter函数和next函数,然后再深入理解for循环,具体内容童鞋们可以看官方文档。而yield from x即相当于for y in x: yield y。
给刚认识yield的童鞋一个小科普,顺便回忆一下组合数C(n,m)的定义即
C(n, m) = C(n-1, m-1) + C(n-1, m)
如果我们把C视为根据n和m确定的集合,加号视为并集,利用下面这个generator我们可以懒惰地逐步获取所有组合元素:
def combinations(seq, m):
if m > len(seq):
raise ValueError('Cannot choose more than sequence has.')
elif m == 0:
yield ()
elif m == len(seq):
yield tuple(seq)
else:
for p in combinations(seq[1:], m-1):
yield (seq[0],) + p
yield from combinations(seq[1:], m)
for combi in combinations('abcde', 2):
print(combi)
可以看到,generator结构精准地反映了集合运算的特征,而且蕴含了对元素进行映射的逻辑,可读性非常强。
OK,代码到此为止。利用next函数,我们可以懒惰地获取查找结果。
In [54]: words = ['hell', 'hello', 'hela', 'helmut', 'dome']
In [55]: t = make_trie(words)
In [57]: c = check_lazy(t, 'hell')
In [58]: next(c)
Out[58]: 'hell'
In [59]: next(c)
Out[59]: 'hello'
In [60]: next(c)
Out[60]: 'hela'
话说回来,lazy的一个问题在于我们不能提前预测并剔除重复的元素。你可以采用一个小利器decorator,修饰一个generator,保证结果不重复。
from functools import wraps
def uniq(func):
@wraps(func)
def _func(*a, **kw):
seen = set()
it = func(*a, **kw)
while 1:
x = next(it)
if x not in seen:
yield x
seen.add(x)
return _func
这个url打开的文件包含常用英语词汇,可以用来测试代码:
In [10]: import urllib
In [11]: f = urllib.request.urlopen("https://raw.githubusercontent.com/eneko/data-repository/master/data/words.txt")
# 去除换行符
In [12]: t = make_trie(line.decode().strip() for line in f.readlines())
In [13]: f.close()
----------------------分-割-线-四-----------------------------
最后的最后,Python中递归是很昂贵的,但是递归的优势在于描述问题。为了追求极致性能,我们可以把递归转成迭代,把去除重复的逻辑直接代入进来,于是有了这个v4版本:
from collections import deque
def check_iter(trie, word, tol=1):
seen = set()
q = deque([(trie, word, '', tol)])
while q:
trie, word, path, tol = q.popleft()
if word == '':
if None in trie:
if path not in seen:
seen.add(path)
yield path
if tol > 0:
for k in trie:
if k is not None:
q.appendleft((trie[k], '', path+k, tol-1))
else:
if word[0] in trie:
q.appendleft((trie[word[0]], word[1:], path+word[0], tol))
if tol > 0:
for k in trie.keys():
if k is not None and k != word[0]:
q.append((trie[k], word[1:], path+k, tol-1))
q.append((trie[k], word, path+k, tol-1))
q.append((trie, word[1:], path, tol-1))
if len(word) > 1:
q.append((trie, word[1]+word[0]+word[2:], path, tol-1))
可以看到,转为迭代方式后我们仍然可以最大程度保留递归风格的程序形状,但也提供了更强的灵活性(对于递归,相当于我们只能用栈来实现这个q)。基于这种迭代程序的结构,如果你有词频数据,可以用该数据维持一个最优堆q,甚至可以是根据上下文自动调整词频的动态堆,维持高频词汇在堆顶,为词语修正节省不少性能。这里就不深入了。
【可选的一步】我们在对单词进行纠正的时候往往倾向于认为首字母是无误的,利用这个现象可以减轻不少搜索压力,花费的时间可以少数倍。
def check_head_fixed(trie, word, tol=1):
for p in check_lazy(trie[word[0]], word[1:], tol=tol):
yield word[0] + p
最终我们简单地benchmark一下:
In [18]: list(check_head_fixed(trie, 'misella', tol=2))
Out[18]:
['micellar',
'malella',
'mesilla',
'morella',
'mysell',
'micelle',
'milla',
'misally',
'mistell',
'miserly']
In [19]: %timeit list(check_head_fixed(trie, 'misella', tol=2))
1.52 ms ± 2.84 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
在Win10的i7上可以在两毫秒左右返回所有结果,可以说令人满意。
面试题各公司不尽相同。一般而言,都会考一些最基础的东西,来看你学的扎不扎实。
比如,我经历过的面试题里,最经常遇到的就是画出星三角接线图。相信专业人员都会知道,但真的让你在纸上画出来,你真的能完全无误的画好吗?
再就是最基础的PLC小功能程序编写,很常见的小程序,如果,写不出来,那么被录用的机会很小。
算法工程师各种待遇按工作时间,资历,等不同,差异很大,基本从4500元到15000元不等。