假如我要去碧桂园面试,该准备些什么面试题目要求?

时间:2024-07-11 14:32 人气:0 编辑:admin

一、假如我要去碧桂园面试,该准备些什么面试题目要求?

一般来说碧桂园下面的子公司的门槛都是大专,这个很容易,物业和营销是很容易能进去的,基本的要求和其他公司大差不差,形象较好,逻辑分析能力和与人沟通能力优秀,沉稳,主动,独立就行了。面试时态度诚恳,表现出对碧桂园(碧桂园创始人,公司文化,社会事迹,公司成就)的崇拜之情,强烈希望进入公司发展的愿望,另外百度一些碧桂园公司的背景,碧桂园在房产领域的特长。还有你为什么选择进入碧桂园和今后的个人规划(人事会问,其实进去就是赚钱赚经验嘛,但你要说的好听,)

二、mahout面试题?

之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。

训练数据:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

检测数据:

sunny,hot,high,weak

结果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代码调用Mahout的工具类实现分类。

基本思想:

1. 构造分类数据。

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

接下来贴下我的代码实现=》

1. 构造分类数据:

在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。

数据文件格式,如D1文件内容: Sunny Hot High Weak

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 测试代码

*/

public static void main(String[] args) {

//将训练数据转换成 vector数据

makeTrainVector();

//产生训练模型

makeModel(false);

//测试检测数据

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean参数是,是否递归删除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成训练模型失败!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("检测数据构造成vectors初始化时报错。。。。");

System.exit(4);

}

}

/**

* 加载字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用贝叶斯算法开始分类,并提取得分最好的分类label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("检测所属类别是:"+getCheckResult());

}

}

三、webgis面试题?

1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。

WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。

2. 请谈谈您在WebGIS开发方面的经验和技能。

我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。

3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。

在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。

4. 请谈谈您对WebGIS未来发展的看法和期望。

我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。

四、freertos面试题?

这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。

五、买了碧桂园的房子,自己装修还是选碧桂园精装呢?

第一次装修没有经验,怎么避开定制雷区?作为有2套装修经验的过来人,分享一下自己的心得吧。

-------以下为心得分享-----------------

先说楼主的问题,纠结要不要开发商的精装修还是找外面的公司全包?

建议先价格对比,如果买的是大开发商(比如碧桂园)的房子,而且有装修服务,我建议可以选择开发商,毕竟售后服务相对方便,不会有找不到人的尴尬。

【装 修 前 准 备】

看样板间做参考

可以去看一下开发商装修的样例,找跟自己房子差不多大的样板间看,多听朋友装修后的感受,有合适的可以照着装。

定好风格

装修的时候一定要定好一个风格呀,当时装房子就把喜欢的全部买回来,太混搭了,搭在一起根本不好看,还是要自己定好一个基调才行。

当初买房子的时候不大,但心比天高,想要怎么装修出高逼格的调调,就开始设计很多装饰性的玄关,隔断等,当设计效果出来后,发现房间的空间变得越来越小了,于是痛定思痛,颠覆性设计,采用简约型风格来装修,如打通了厨房和客厅,大房间和阳台等,去除了很多空间占有率很高的装修元素。两个多月后,房子装修好了,简约大气,格局合理,充满生活气息,真是棒棒哒!

【找 谁 做 设 计 / 装 修】

觉得如果不懂,还是找大公司的装修团队。但是忌讳找那种项目经理负责制的,切记切记。项目经理负责制和小公司没区别,还是散班子。价格还贵的多,因为公司会从装修款中直接拿走30%,也就是说你家的房子装修出来的东西最多值你装修款的70%。大公司要找就要找那种专业工程出身的,这种公司人都很专业,师傅手艺也很好。装修一定不能找熟人,公司一定要找正规装修公司!因为是熟人,他偷工减料,拖工期,你又不好说什么,还有他做的好也就算了,到处是问题!只是个人的装修总结分享给大家~

看了楼主的问题,有提到碧桂园的装修公司,顺便百度了一下:现代筑美家居是集家居研发、设计、生产和销售为一体的综合型家居服务公司,主要生产木门、地板、橱柜、卫浴柜、衣柜、家具、淋浴屏风、厨房电器等成品家居用品。这家公司自2007年发展至今,已发展成为全球最大的工程装饰材料生产基地之一。 而且坚持绿色环保的生产原则,在橱柜选材、用料、生产等环节严密把关,选用欧洲E0、E1级高标准的环保板材,如果要楼主选择开发商的装修公司,可以再多考察一下。

【装修流程,不能颠倒】

装修流程可细分为:1前期设计——2主体拆改——3水电改造——4木工——5贴砖——6刷墙面漆——7厨卫吊顶——8橱柜安装——9木门安装——10地板安装——11铺贴壁纸——12散热器安装——13开关插座安装——14灯具安装——15五金洁具安装——16窗帘杆安装——17保洁——18家具进场安装——19家居软装

【最后的建议】

接触装修公司的同时,顺便也要了解建材市场,可以根据下一阶段项目的需求,提前开始收集材料信息,如果不知道需要哪些材料的,可以从多个装修公司提供的不同装修模式的报价单中进行综合补齐,了解主材、辅材、人工的大致情况。

以上都是装修前期要做的准备,要提前两个月进行准备,至少要一个月,稳妥点就做一个季度的调查,实际上很多网友都是大半年前就开始做准备了。

总结一下,装修说难难在复杂,说简单是因为工程都是按部就班的,有标准规范可以参考。装修的套路哪里都会有,都要站在标准规范之上去理解,有得人心的套路也有不得人心的。所有事情的核心都是围绕钱来展开的,所以一定要盯紧项目报价单,做到明明白白花钱,在对应项目实际动工之前,做好深入了解,在动工时候做到多沟通勤监督,把钱和质量都把控好。

还有,如果不知道选择什么材料,可以参考十大品牌就行了~

↓↓↓

六、paas面试题?

1.负责区域大客户/行业客户管理系统销售拓展工作,并完成销售流程;

2.维护关键客户关系,与客户决策者保持良好的沟通;

3.管理并带领团队完成完成年度销售任务。

七、面试题类型?

你好,面试题类型有很多,以下是一些常见的类型:

1. 技术面试题:考察候选人技术能力和经验。

2. 行为面试题:考察候选人在过去的工作或生活中的行为表现,以预测其未来的表现。

3. 情境面试题:考察候选人在未知情境下的决策能力和解决问题的能力。

4. 案例面试题:考察候选人解决实际问题的能力,模拟真实工作场景。

5. 逻辑推理题:考察候选人的逻辑思维能力和分析能力。

6. 开放性面试题:考察候选人的个性、价值观以及沟通能力。

7. 挑战性面试题:考察候选人的应变能力和创造力,通常是一些非常具有挑战性的问题。

八、cocoscreator面试题?

需要具体分析 因为cocoscreator是一款游戏引擎,面试时的问题会涉及到不同的方面,如开发经验、游戏设计、图形学等等,具体要求也会因公司或岗位而异,所以需要根据实际情况进行具体分析。 如果是针对开发经验的问题,可能会考察候选人是否熟悉cocoscreator常用API,是否能够独立开发小型游戏等等;如果是针对游戏设计的问题,则需要考察候选人对游戏玩法、关卡设计等等方面的理解和能力。因此,需要具体分析才能得出准确的回答。

九、mycat面试题?

以下是一些可能出现在MyCat面试中的问题:

1. 什么是MyCat?MyCat是一个开源的分布式数据库中间件,它可以将多个MySQL数据库组合成一个逻辑上的数据库集群,提供高可用性、高性能、易扩展等特性。

2. MyCat的优势是什么?MyCat具有以下优势:支持读写分离、支持分库分表、支持自动切换故障节点、支持SQL解析和路由、支持数据分片等。

3. MyCat的架构是怎样的?MyCat的架构包括三个层次:客户端层、中间件层和数据存储层。客户端层负责接收和处理客户端请求,中间件层负责SQL解析和路由,数据存储层负责实际的数据存储和查询。

4. MyCat支持哪些数据库?MyCat目前支持MySQL和MariaDB数据库。

5. MyCat如何实现读写分离?MyCat通过将读请求和写请求分别路由到不同的MySQL节点上实现读写分离。读请求可以路由到多个只读节点上,从而提高查询性能。

6. MyCat如何实现分库分表?MyCat通过对SQL进行解析和路由,将数据按照一定规则划分到不同的数据库或表中,从而实现分库分表。

7. MyCat如何保证数据一致性?MyCat通过在多个MySQL节点之间同步数据,保证数据的一致性。同时,MyCat还支持自动切换故障节点,从而保证系统的高可用性。

8. MyCat的部署方式有哪些?MyCat可以部署在单机上,也可以部署在多台服务器上实现分布式部署。

十、下乡扶贫面试题?

谢邀。我先跟你说一个实际的工作例子,再说怎么答题,姑且称为为一碗水的故事。

某县xx局的张副局帮扶的贫困户位于100公里以外的偏远小乡村,该贫困户一户7人,年迈的爷爷奶奶,户主五十多岁,三个正在读书的孩子。张副局每次驾车到该村村委后,再乘坐摩托车到底该贫困户家中,送点慰问品、聊聊家常、看看政策落实,填写帮扶手册。但每次张副局都会自带一瓶矿泉水入户,每当老人家热情的招呼:领导远道而来,喝碗水吧。张副局总是摆摆手说道:老人家,我不渴或者我这有水,然后过一会拿起矿泉水就喝。看着那只发黄发黑的水壶,满是泥垢的双手,油腻的碗,作为城里长大的张副局,怎么可能会喝。2019年该户各项指标达标,但在脱贫的事情上老人家一直不愿配合。年底的一次入户时,张副局身体不适,又恰好车上的矿泉水用完,刚到贫困户家里时,老人家一如既往地招呼,张副局推辞后,饥渴难耐,还是端起碗来,喝了一口,山泉水口感还是可以的。当天张副局陆续喝了三碗水,老人家最后说道:既然领导不嫌弃咱们,那我也听领导的,你说怎么办就怎么办吧。瞬间,张副局恍然大悟,原来,不喝他的一碗水,他就觉得你是嫌弃他们脏,嫌弃他这个与土打交道老实人。人人都渴望被平等对待,就像费洛伊德一样,平等才能创造更多的可能。当然,他们的环境也的确差一些。张副局往后每次入户除了拉家常外就是帮他们一起打扫卫生,教会他们各类常见的健康知识。

再回到题目上来,首先作为一名帮扶干部,要与贫困户建立起平等和谐的帮扶结对关系,入户帮扶过程中,贫困户拿了椅子让我坐,证明贫困户还是比较热情、比较配合工作的。对于椅子脏,我首先会接过椅子,并向贫困户表示感谢。顺其自然的用手拍拍椅子,然后把椅子靠近贫困户的地方坐下来,一起拉家常,商量扶贫工作。

其次是贫困户的椅子脏,说明了他的卫生观念不够强。这就需要我们加强向他宣传卫生健康知识,抽时间共同打扫卫生。

再次就是贫困户他家中可能存在家具比较紧缺情况,我们就要积极发挥后盾单位作用,帮他们增加收入,添置家具。

最后就是我们在工作中,要妥善处理好每个工作细节,一点一滴做起,扎实地做好脱贫攻坚工作,确保奔小康路上一个都不少!

相关资讯
热门频道

Copyright © 2024 招聘街 滇ICP备2024020316号-38