2017国考监狱职位

时间:2024-12-20 03:24 人气:0 编辑:招聘街

一、2017国考监狱职位

2017国考监狱职位-提供一个有意义的职业选择

2017国家公务员考试中,监狱职位备受考生关注。监狱系统作为一个重要的公共安全维护部门,具有广阔的发展前景和丰富的职业选择。本文将探讨2017国考监狱职位的特点和优势,以帮助考生更好地了解这一职业,为职业选择做出明智决策。

监狱职位的特点

自古以来,监狱就承担着维护社会安全和秩序的重要责任。作为公安系统的一部分,监狱系统在近年来也在不断发展和壮大。监狱职位的特点主要体现在以下几个方面:

  • 社会责任重大:监狱职位直接与犯罪分子进行接触,肩负着监管和改造职责,对于社会的安定与和谐起到了重要作用。
  • 职业稳定性高:监狱系统作为国家的重要组成部分,其工作稳定性高,工作待遇相对较好,以及完善的职业发展体系为从业人员提供了广阔的发展空间。
  • 职位多样性:监狱系统内有许多不同的职位,包括管理人员、执法人员、心理咨询师等。不同的职位可以根据个人的兴趣和特长进行选择。
  • 提供培训机会:监狱系统注重对从业人员的培训和提升,为员工提供了广泛的培训机会,使其不断提升自身素质。

2017国考监狱职位的优势

2017国考监狱职位相比其他职位有自身的优势,这些优势一方面体现在职业发展方面,另一方面也体现在工作环境和福利待遇方面。

职业发展优势:

进入监狱系统工作后,职业发展具有以下优势:

  • 晋升机会多:监狱系统拥有完善的晋升机制和职务评定体系,通过不断提升个人素质和工作能力,有较大机会获得晋升。
  • 职位多样性:监狱系统内有丰富多样的职位,从管理、执法到心理咨询等等,不同职位的存在为从业人员提供了更多的选择和发展空间。
  • 人脉资源丰富:监狱系统作为公安系统的一部分,与其他警务机构之间有着密切的合作和联系,进入监狱系统工作有机会结交各方面的人脉资源。

工作环境与福利待遇优势:

进入监狱系统工作后,在工作环境和福利待遇方面也有一系列的优势:

  • 稳定的工作环境:监狱系统专门为从业人员提供了稳定的工作环境,为工作提供了有力保障。
  • 良好的福利待遇:监狱系统为从业人员提供了丰厚的福利待遇,包括住房补贴、医疗保险等多项福利。
  • 全方位的保障措施:监狱系统注重从业人员的安全与福利,提供了全方位的保障措施,包括安全培训、意外伤害保险等等。
  • 职业发展机会:监狱系统为从业人员提供了广泛的职业发展机会,通过不断学习和提升,有机会进入领导岗位或专业技术岗位。

如何准备2017国考监狱职位

对于准备报考2017国考监狱职位的考生来说,除了了解职位特点和优势,还需合理安排准备时间,并采取相应的应试策略。

以下是准备考试的一些建议:

  • 了解招录信息:详细了解国考监狱职位的招录信息,包括报名时间、考试科目、面试等事项,有针对性地准备相关知识。
  • 制定学习计划:根据考试大纲和个人情况制定学习计划,合理安排时间进行知识复习和专项强化训练。
  • 备考资料准备:整理相关的备考资料,包括教材、模拟试题等,为备考提供有力支持。
  • 刷题与模拟:通过刷题和模拟考试,熟悉考试形式和节奏,提高解题能力和应试技巧。
  • 注重综合素质:除了专业知识的学习,还要注重发展综合素质,包括逻辑思维、语言表达和领导能力等。

通过以上合理的准备,相信考生们能够在2017国考监狱职位中取得优异的成绩,迈向自己理想的职业生涯。

总结:

2017国考监狱职位提供了一个有意义的职业选择。监狱系统作为社会安全维护部门,职业发展前景广阔且稳定。职位特点和优势使其成为众多考生的首选。为了取得理想的职业成就,考生们应加强对监狱职位的了解,并进行有针对性的准备。通过制定学习计划、刷题模拟和提升综合素质等方式,积极备战2017国考监狱职位,相信能够实现自己的职业目标!

二、2017特岗教师面试题目

2017特岗教师面试题目

在当今教育领域,成为一名教师是许多人的梦想和追求。特岗教师是一个备受关注的职位,而2017年的特岗教师面试题目也备受广大教育工作者和求职者的关注。面试题目的设置旨在考察应聘者的专业知识、教学能力、综合素质等方面,是对求职者综合能力的一次全面考量。下面将对2017年特岗教师面试题目进行详细介绍和解析,希望对即将面试的人员有所帮助。

专业知识类面试题目

专业知识类面试题目是特岗教师面试中的重中之重,包括教育学、心理学、教学法等专业知识内容。在2017年的特岗教师面试中,关于专业知识的问题涉及到教育改革、素质教育、课程设计等方面,需要应聘者对教育教学的基本原理和理论有所了解和掌握。

教学能力类面试题目

教学能力是特岗教师应具备的重要素质之一,也是面试中必定会涉及的内容。在2017年的特岗教师面试中,针对教学能力的问题主要包括课堂管理、教学设计、学生评价等方面,考察应聘者的实际教学能力和实践经验。

综合素质类面试题目

特岗教师的招聘要求不仅包括专业知识和教学能力,还需要具备一定的综合素质和能力。在2017年的特岗教师面试中,综合素质类面试题目主要考察应聘者的综合素质、沟通能力、团队合作精神等方面,以确保招聘的特岗教师能够胜任教育教学工作。

面试技巧与注意事项

除了准备面试题目外,应聘者还应了解一些面试技巧和注意事项,以提高面试的成功率。建议应聘者在面试前充分准备,熟悉自己的简历和求职材料,展现出自信和积极的态度。同时,在回答问题时要清晰明了,表达准确且简洁,避免答非所问或唐突回答。

在面试过程中,应聘者要注意言行举止得体,保持礼貌和谦虚的态度。与面试官的交流要主动积极,展现自己的特长和优势。最后,面试结束后要及时向面试官表达感谢,并对自己的表现进行总结和反思,为下一次的面试做准备。

结语

总的来说,2017年特岗教师面试题目涉及专业知识、教学能力、综合素质等多个方面,是对求职者综合能力的全面考验。通过充分的准备和自信的表现,相信每一位应聘者都能在面试中展现出自己的实力和魅力,顺利跻身于特岗教师的行列。希望以上介绍对您有所帮助,祝您在未来的求职之路上取得成功!

三、2017java面试题百度云

2017Java面试题百度云

在面试准备过程中,了解并掌握常见的面试题是至关重要的。本文将介绍2017年Java面试中涉及到的百度云相关问题,帮助读者更好地准备面试。

1. 百度云是什么?

百度云是百度公司推出的云计算服务平台,为用户提供云存储、云计算、云数据库等服务。在云计算领域,百度云拥有丰富的产品线,能够满足不同用户的需求。

2. Java在百度云中的应用

Java作为一种主流的编程语言,在百度云的应用也非常广泛。很多百度云的后端服务都是采用Java语言编写的,因此熟练掌握Java语言对于在百度云工作的人来说至关重要。

3. 2017年Java面试题示例

以下是2017年Java面试中可能会涉及到的一些百度云相关题目示例:

  • 问题1: 什么是百度云的对象存储服务?
  • 问题2: 请简要介绍一下百度云的数据处理服务。
  • 问题3: 如何在百度云上部署一个使用Java编写的Web应用程序?
  • 问题4: 请解释一下百度云中的分布式文件系统。

4. 面试准备建议

在准备面试时,除了熟悉Java语言和百度云的相关知识外,还应该重点关注以下几个方面:

  1. 深入了解百度云的产品和服务,包括云存储、云计算、大数据等。
  2. 学习掌握Java语言的核心概念和常用技术。
  3. 多做一些项目实践,提升自己的编程能力。
  4. 关注行业动态,了解云计算领域的最新发展。

结语

通过本文的介绍,相信读者对2017年Java面试题中涉及到的百度云相关内容有了一定的了解。在面试准备过程中,持续学习和提升自己的能力是非常重要的,希望读者能够取得理想的面试成绩。

四、白城监狱除了桢来监狱还有哪个监狱?白城监狱?

白城市四方陀子监狱和五间户监狱,最近还有内蒙古的监狱(保安沼、乌塔其等四个监狱)

五、2017黑龙江监狱警察公务员考试科目?

2017年黑龙江监狱警察公务员的考试科目还没有确定,可以根据2016年的考试大纲先进行复习,可以在职位表中进行查看,要报考的职位是不是需要加试专业科目。

黑龙江省考笔试科目包括公共科目和专业科目考试。一般职位,只考公共科目,公共科目包括《行政职业能力倾向测验》和《申论》两科,每科满分为100分,总分200分。公安、检察、法院、司法等部门部分职位加试科目分别为《公安基础知识》、《检察基础知识》、《审判基础知识》、《监狱劳教基础知识》,统一纳入公共科目笔试考试,每科独立成卷,满分均为100分。

六、宜兴丁山监狱第十四监区2017会见表?

宜兴丁山监狱十四监区2017年上半年会见日安排: 1月6日,19日;2月6日,20日; 3月6日,20日;4月7日,20日; 5月5日,19日;6月5日,20日; 祝改造顺利!

七、mahout面试题?

之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。

训练数据:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

检测数据:

sunny,hot,high,weak

结果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代码调用Mahout的工具类实现分类。

基本思想:

1. 构造分类数据。

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

接下来贴下我的代码实现=》

1. 构造分类数据:

在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。

数据文件格式,如D1文件内容: Sunny Hot High Weak

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 测试代码

*/

public static void main(String[] args) {

//将训练数据转换成 vector数据

makeTrainVector();

//产生训练模型

makeModel(false);

//测试检测数据

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean参数是,是否递归删除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成训练模型失败!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("检测数据构造成vectors初始化时报错。。。。");

System.exit(4);

}

}

/**

* 加载字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用贝叶斯算法开始分类,并提取得分最好的分类label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("检测所属类别是:"+getCheckResult());

}

}

八、webgis面试题?

1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。

WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。

2. 请谈谈您在WebGIS开发方面的经验和技能。

我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。

3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。

在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。

4. 请谈谈您对WebGIS未来发展的看法和期望。

我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。

九、freertos面试题?

这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。

十、paas面试题?

1.负责区域大客户/行业客户管理系统销售拓展工作,并完成销售流程;

2.维护关键客户关系,与客户决策者保持良好的沟通;

3.管理并带领团队完成完成年度销售任务。

相关资讯
热门频道

Copyright © 2024 招聘街 滇ICP备2024020316号-38