虎门大桥收费标准2017是广东省范围内交通收费的一个热门话题。作为连接广东东莞和珠海的重要交通枢纽,虎门大桥的收费标准一直备受关注。2017年的收费标准在一定程度上反映了交通的运营情况和政策调整。接下来我们将详细介绍2017年虎门大桥的收费标准,让大家了解其中的含义和影响。
虎门大桥是一座横跨珠江口的大型跨海大桥,也是连接广东东莞和珠海两地的重要通道。该大桥的建设极大地便利了两地之间的交通往来,也成为珠三角地区重要的交通枢纽之一。由于其重要性,虎门大桥的收费标准一直备受关注。
2017年,根据相关政策规定和运营成本考量,虎门大桥的收费标准有所调整。具体来说,2017年虎门大桥的收费标准主要包括车辆类型划分、收费金额、优惠政策等方面的内容。
根据2017年虎门大桥的收费标准,不同类型的车辆会有不同的收费金额。一般来说,小型车辆的通行费用相对较低,而大型车辆的通行费用则相对较高。收费金额也会受到通行距离等因素的影响。
为了方便交通,提高交通效率,2017年虎门大桥也实行了一些优惠政策。例如,对本地车辆可能会有不同的优惠政策,或者在特定时间段内实行优惠活动等。这些优惠政策旨在促进交通便利化,减轻车辆拥堵状况。
虎门大桥作为珠三角地区的交通重要枢纽,其收费标准直接关系到区域内的交通运输情况和交通效率。2017年的虎门大桥收费标准是基于相关政策和运营成本进行调整的,旨在更好地服务交通需求,提高区域的发展效率。随着时代的变迁,交通政策也在不断优化和调整,以更好地适应社会发展的需要。
在过去的几年里,广和大桥一直是人们出行的重要交通枢纽之一。作为连接两座城市的主要桥梁,大桥的收费标准一直备受关注。在2017年,广和大桥的收费标准有了一些调整,让我们来了解一下这些变化。
根据2017年的最新规定,广和大桥的收费标准主要分为以下几个部分:
为什么2017年广和大桥的收费标准会发生调整呢?主要原因包括以下几点:
随着城市交通的不断发展,广和大桥作为重要的交通枢纽将继续发挥重要作用。未来,我们可以期待以下几点发展方向:
综上所述,2017年广和大桥的收费标准调整是为了适应城市交通发展的需要,提升服务质量和效率,为用户营造更好的出行环境。
初一还好,不塞的。
以后节假日可以关注 南澳大桥官微 这个公众号,有大桥两侧车流实时监控。
在当今教育领域,成为一名教师是许多人的梦想和追求。特岗教师是一个备受关注的职位,而2017年的特岗教师面试题目也备受广大教育工作者和求职者的关注。面试题目的设置旨在考察应聘者的专业知识、教学能力、综合素质等方面,是对求职者综合能力的一次全面考量。下面将对2017年特岗教师面试题目进行详细介绍和解析,希望对即将面试的人员有所帮助。
专业知识类面试题目是特岗教师面试中的重中之重,包括教育学、心理学、教学法等专业知识内容。在2017年的特岗教师面试中,关于专业知识的问题涉及到教育改革、素质教育、课程设计等方面,需要应聘者对教育教学的基本原理和理论有所了解和掌握。
教学能力是特岗教师应具备的重要素质之一,也是面试中必定会涉及的内容。在2017年的特岗教师面试中,针对教学能力的问题主要包括课堂管理、教学设计、学生评价等方面,考察应聘者的实际教学能力和实践经验。
特岗教师的招聘要求不仅包括专业知识和教学能力,还需要具备一定的综合素质和能力。在2017年的特岗教师面试中,综合素质类面试题目主要考察应聘者的综合素质、沟通能力、团队合作精神等方面,以确保招聘的特岗教师能够胜任教育教学工作。
除了准备面试题目外,应聘者还应了解一些面试技巧和注意事项,以提高面试的成功率。建议应聘者在面试前充分准备,熟悉自己的简历和求职材料,展现出自信和积极的态度。同时,在回答问题时要清晰明了,表达准确且简洁,避免答非所问或唐突回答。
在面试过程中,应聘者要注意言行举止得体,保持礼貌和谦虚的态度。与面试官的交流要主动积极,展现自己的特长和优势。最后,面试结束后要及时向面试官表达感谢,并对自己的表现进行总结和反思,为下一次的面试做准备。
总的来说,2017年特岗教师面试题目涉及专业知识、教学能力、综合素质等多个方面,是对求职者综合能力的全面考验。通过充分的准备和自信的表现,相信每一位应聘者都能在面试中展现出自己的实力和魅力,顺利跻身于特岗教师的行列。希望以上介绍对您有所帮助,祝您在未来的求职之路上取得成功!
南澳大桥2017年春节七座以下(含七座)小客车免过桥费,免费时间从1月27日(除夕)零时开始,至2月2日(正月初六)24时结束,共免费7天。
那是不会收费的!2017年五一劳动节假期上海长江大桥七座以下(含七座)小客车是不收过路费的,免费时间是从4月29日零时开始,至5月1日24时结束,共免费3天。
在面试准备过程中,了解并掌握常见的面试题是至关重要的。本文将介绍2017年Java面试中涉及到的百度云相关问题,帮助读者更好地准备面试。
百度云是百度公司推出的云计算服务平台,为用户提供云存储、云计算、云数据库等服务。在云计算领域,百度云拥有丰富的产品线,能够满足不同用户的需求。
Java作为一种主流的编程语言,在百度云的应用也非常广泛。很多百度云的后端服务都是采用Java语言编写的,因此熟练掌握Java语言对于在百度云工作的人来说至关重要。
以下是2017年Java面试中可能会涉及到的一些百度云相关题目示例:
在准备面试时,除了熟悉Java语言和百度云的相关知识外,还应该重点关注以下几个方面:
通过本文的介绍,相信读者对2017年Java面试题中涉及到的百度云相关内容有了一定的了解。在面试准备过程中,持续学习和提升自己的能力是非常重要的,希望读者能够取得理想的面试成绩。
之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。
训练数据:
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
检测数据:
sunny,hot,high,weak
结果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代码调用Mahout的工具类实现分类。
基本思想:
1. 构造分类数据。
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
接下来贴下我的代码实现=》
1. 构造分类数据:
在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。
数据文件格式,如D1文件内容: Sunny Hot High Weak
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 测试代码
*/
public static void main(String[] args) {
//将训练数据转换成 vector数据
makeTrainVector();
//产生训练模型
makeModel(false);
//测试检测数据
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean参数是,是否递归删除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成训练模型失败!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("检测数据构造成vectors初始化时报错。。。。");
System.exit(4);
}
}
/**
* 加载字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用贝叶斯算法开始分类,并提取得分最好的分类label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("检测所属类别是:"+getCheckResult());
}
}
1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。
WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。
2. 请谈谈您在WebGIS开发方面的经验和技能。
我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。
3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。
在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。
4. 请谈谈您对WebGIS未来发展的看法和期望。
我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。
这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。