烟草证的办理需要符合当地烟草制品零售点合理布局的要求;要额外注意的是新店如果在学校附件,要求烟草证申请新店距离大于100米-150米以上。
经营场所之间的最近通行距离应当从申请的经营店铺出入口中央到最近零售点的店铺出入口中央,沿着行人所走的最近道路进行测量,并以烟草专卖行政主管部门现场测量结果为准。
近年来,随着社会对公益事业的关注度不断提高,越来越多的昆明公益组织开始兴起。这些组织为社会各个层面的问题提供了解决方案,并通过招聘一流人才来推动公益事业的发展。而昆明公益组织的面试题目和答案,成为了备受关注的话题。
面试对于招聘过程来说非常关键,能够帮助招聘者更好地了解应聘者的能力和素质。而对于应聘者来说,准备面试题目和答案是非常重要的,可以展示自己的专业知识和能力,增加竞争力。
下面是一些常见的昆明公益组织面试题目及其答案,希望能够帮助应聘者更好地准备面试。
这个问题是面试中最常见的问题之一。通过这个问题,面试官可以初步了解应聘者的个人情况、教育背景、工作经验等。在回答这个问题时,应聘者可以简要介绍自己的基本情况,并重点突出与公益事业相关的经历和能力。
这个问题考察应聘者对公益事业的了解程度。应聘者可以从社会责任感、公益事业发展的意义和现状,以及自己参与公益活动的经历等方面进行回答。
这个问题旨在考察应聘者的参与意识和能力。应聘者可以选择自己参与过的与公益事业相关的项目,介绍项目的背景、目标、自己的角色和贡献,以及取得的成果和反思。
这个问题考察应聘者在面对困难和挑战时的应对能力和解决问题的能力。应聘者可以选择一个具体的案例,介绍遇到的困难和挑战,并说明自己的解决思路和采取的具体措施。
这个问题考察应聘者对于成功从事公益事业的关键素质的理解。应聘者可以从个人能力、团队合作、责任心、创新精神等方面进行回答,并结合自身经历进行具体说明。
公益项目中往往需要跨部门合作,这个问题考察应聘者在跨部门合作中的沟通协调能力和团队合作能力。应聘者可以选择一个与公益事业相关的例子,介绍自己在跨部门合作中的角色和贡献,以及通过与其他部门的协作实现项目目标的经验。
公益项目常常面临各方利益关系的复杂情况,这个问题考察应聘者处理复杂情况和权衡各方利益的能力。应聘者可以结合自己的经验,说明自己如何处理利益关系,并秉持公正、公平、公开的原则推动项目的顺利进行。
这个问题考察应聘者在公益事业中的成就和贡献。应聘者可以选择一个具体的案例,介绍自己的角色和取得的成果,以及对个人成长和公益事业发展的意义。
这些面试题目涵盖了昆明公益组织中常见的问题,通过回答这些问题,应聘者可以展示自己的专业素养和能力,提高自己在面试中的竞争力。同时,招聘者也可以通过这些问题更加全面地了解应聘者的背景和能力,从而更好地挑选出适合的人才来推动公益事业的发展。
昆明公益组织活动类面试题
公益活动作为一种社会责任和行动的体现,越来越受到人们的关注和重视。昆明作为中国西南地区的重要城市,拥有众多优秀的公益组织,它们致力于推动社会进步和改善社会福利。参加昆明公益组织的面试,是加入这个充满爱心和正能量的大家庭的第一步。下面是一些常见的昆明公益组织活动类面试题,希望对你有所帮助。
这是面试官了解你对公益活动动机的问题。你可以从以下几个方面回答:
面试官想要了解你在之前的公益活动中所扮演的角色,以及你的能力和经验。你可以回答以下几个方面:
公益活动虽然充满正能量,但也存在一些挑战和困难。你可以从以下几个方面回答:
在面试之前,通过对该公益组织的了解,弄清楚其具体的项目和目标是很重要的。你可以在回答这个问题时,结合该组织的具体情况来回答。
这个问题旨在了解你对困难的应对能力和解决问题的能力。你可以分享一些具体的案例,并强调你的解决方案和取得的成果。
每个人对参与公益活动的目的都各有不同。你可以回答以下几个方面:
以上就是一些常见的昆明公益组织活动类面试题,希望能够帮助你在面试中更好地回答问题,展示出自己的素质和能力。无论是否能成功加入某个公益组织,参与公益活动都是一种有意义的行为,在推动社会进步和共建美好社会的道路上,每个人都可以贡献自己的力量。
烟草批发或者专卖店都属于国家直属的 那些地洲上的亲戚们上来都是直接去吴井路批发,好象是8号哩,昆明批发营业部 其他的担心 就是人家人拽
《烟草专卖许可证申请与办理程序规定》并没有做专营店之间间隔的规定,建议具体咨询当地县级烟草专营管理部门,如被拒绝许可的,可以要求出示具体不予审批的依据及理由。
你得到当地的烟草专卖管理局办证大厅去申请办理,申请的时候,最好能够看清你当地烟草专卖零售点合理布局规划,千万不要受哪条的影响,否则你很可能办不来。
很简单.要开烟草专卖店的话.当然是先要办理《烟草专卖许可证》。说明一下办理该证件是不收费的!资料如下,请参考! 新办烟草专卖零售许可证 发布时间
之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。
训练数据:
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
检测数据:
sunny,hot,high,weak
结果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代码调用Mahout的工具类实现分类。
基本思想:
1. 构造分类数据。
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
接下来贴下我的代码实现=》
1. 构造分类数据:
在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。
数据文件格式,如D1文件内容: Sunny Hot High Weak
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 测试代码
*/
public static void main(String[] args) {
//将训练数据转换成 vector数据
makeTrainVector();
//产生训练模型
makeModel(false);
//测试检测数据
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean参数是,是否递归删除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成训练模型失败!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("检测数据构造成vectors初始化时报错。。。。");
System.exit(4);
}
}
/**
* 加载字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用贝叶斯算法开始分类,并提取得分最好的分类label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("检测所属类别是:"+getCheckResult());
}
}
1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。
WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。
2. 请谈谈您在WebGIS开发方面的经验和技能。
我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。
3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。
在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。
4. 请谈谈您对WebGIS未来发展的看法和期望。
我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。
这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。