首先会问有无动物防疫的相关工作经历,及主要工作业绩是什么?
回答技巧是,重点选择过往经历和业绩中的数字和具体案例来回答,这样简明扼要,还有很强的说服力。还有会问如果面试成功了会怎么做?
回答技巧是,尽量简明扼要,直奔重点,要牢记,说多错多
问题一:“请自我介绍一下”
回答技巧:自我介绍必须与简历一致内容一致,要求真实有效,回答时最好口语化一点,简洁切中要害,条理清晰,层次分明即可。
问题二:“说说你上一份工作的主要工作内容以及掌握了哪些专业技能”
回答技巧:此问题主要考察你所掌握的工作技能及工作经验。回答时可根据应聘岗位要求排列主次。比如说如果应聘“养猪技术员”,要求是熟练掌握养猪饲养技术、疾病防控、疾病诊断和救治等工作,且需吃苦耐劳,回答时可根据自身真实情况条理清晰的表明自己的养猪专业技术,并可根据要求排列主次回答,让面试官迅速抓住你是符合要求的求职者。
问题三:“你有哪些兴趣爱好”
回答技巧:兴趣爱好能反映应聘者的性格、心态、世界观。回答时应避免庸俗不雅的兴趣爱好,最好不仅限于读书,上网,听音乐等,最好有些户外爱好,因为畜牧行业岗位很多要求具备吃苦耐劳、不怕脏不怕累等精神,户外活动爱好可体现这种精神。
之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。
训练数据:
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
检测数据:
sunny,hot,high,weak
结果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代码调用Mahout的工具类实现分类。
基本思想:
1. 构造分类数据。
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
接下来贴下我的代码实现=》
1. 构造分类数据:
在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。
数据文件格式,如D1文件内容: Sunny Hot High Weak
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 测试代码
*/
public static void main(String[] args) {
//将训练数据转换成 vector数据
makeTrainVector();
//产生训练模型
makeModel(false);
//测试检测数据
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean参数是,是否递归删除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成训练模型失败!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("检测数据构造成vectors初始化时报错。。。。");
System.exit(4);
}
}
/**
* 加载字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用贝叶斯算法开始分类,并提取得分最好的分类label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("检测所属类别是:"+getCheckResult());
}
}
1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。
WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。
2. 请谈谈您在WebGIS开发方面的经验和技能。
我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。
3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。
在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。
4. 请谈谈您对WebGIS未来发展的看法和期望。
我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。
这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。
1.负责区域大客户/行业客户管理系统销售拓展工作,并完成销售流程;
2.维护关键客户关系,与客户决策者保持良好的沟通;
3.管理并带领团队完成完成年度销售任务。
你好,面试题类型有很多,以下是一些常见的类型:
1. 技术面试题:考察候选人技术能力和经验。
2. 行为面试题:考察候选人在过去的工作或生活中的行为表现,以预测其未来的表现。
3. 情境面试题:考察候选人在未知情境下的决策能力和解决问题的能力。
4. 案例面试题:考察候选人解决实际问题的能力,模拟真实工作场景。
5. 逻辑推理题:考察候选人的逻辑思维能力和分析能力。
6. 开放性面试题:考察候选人的个性、价值观以及沟通能力。
7. 挑战性面试题:考察候选人的应变能力和创造力,通常是一些非常具有挑战性的问题。
需要具体分析 因为cocoscreator是一款游戏引擎,面试时的问题会涉及到不同的方面,如开发经验、游戏设计、图形学等等,具体要求也会因公司或岗位而异,所以需要根据实际情况进行具体分析。 如果是针对开发经验的问题,可能会考察候选人是否熟悉cocoscreator常用API,是否能够独立开发小型游戏等等;如果是针对游戏设计的问题,则需要考察候选人对游戏玩法、关卡设计等等方面的理解和能力。因此,需要具体分析才能得出准确的回答。
以下是一些可能出现在MyCat面试中的问题:
1. 什么是MyCat?MyCat是一个开源的分布式数据库中间件,它可以将多个MySQL数据库组合成一个逻辑上的数据库集群,提供高可用性、高性能、易扩展等特性。
2. MyCat的优势是什么?MyCat具有以下优势:支持读写分离、支持分库分表、支持自动切换故障节点、支持SQL解析和路由、支持数据分片等。
3. MyCat的架构是怎样的?MyCat的架构包括三个层次:客户端层、中间件层和数据存储层。客户端层负责接收和处理客户端请求,中间件层负责SQL解析和路由,数据存储层负责实际的数据存储和查询。
4. MyCat支持哪些数据库?MyCat目前支持MySQL和MariaDB数据库。
5. MyCat如何实现读写分离?MyCat通过将读请求和写请求分别路由到不同的MySQL节点上实现读写分离。读请求可以路由到多个只读节点上,从而提高查询性能。
6. MyCat如何实现分库分表?MyCat通过对SQL进行解析和路由,将数据按照一定规则划分到不同的数据库或表中,从而实现分库分表。
7. MyCat如何保证数据一致性?MyCat通过在多个MySQL节点之间同步数据,保证数据的一致性。同时,MyCat还支持自动切换故障节点,从而保证系统的高可用性。
8. MyCat的部署方式有哪些?MyCat可以部署在单机上,也可以部署在多台服务器上实现分布式部署。
根据国家标准《学科分类与代码》(GB/T13745-92),具体分类如下:
1、农学:包括农业史、农业基础学科、农艺学、园艺学、土壤学、植物保护学、农业工程、农学其他学科等8个二级学科。
2、林学:包括林业基础学科、林木遗传育种学、森林培育学(亦称造林学)、 森林经理学、森林保护学、野生动物保护与管理、防护林学、经济林学、园林学、林业工程、森林统计学、林业经济学、林学其他学科等13个二级学科。
3、畜牧、兽医科学:包括畜牧兽医科学基础学科、畜牧学、兽医学、畜牧兽医科学其他学科等4个二级学科。