VR体验馆:VR头盔和VR眼镜的区别?

时间:2024-12-16 09:21 人气:0 编辑:招聘街

一、VR体验馆:VR头盔和VR眼镜的区别?

硬件、价格差别:VR眼镜的组成,主要是依靠镜片为技术核心,借助手机这一外部设备,让用户的眼睛处在一个黑色的封闭空间里即可进行视觉体验。而VR头盔硬件构成 VR头盔,则是独立出来不需要手机这个外设的工具,其中组成配件就有许多,例如传感器,蓝牙,无线信号等硬件。当然,由于前者由于硬件构成简单(一般只需一个外壳和、头带及两块凸透镜组成),因此VR头盔(一般在千元以上)在价格上一般远远高于VR眼镜(便宜的不到10元)。

可视范围不同:就VR眼镜而言,VR眼镜看视频时画面的大小是随着手机尺寸而决定的,另外反馈出来的视觉效果就是上下有黑色边框,让体验大打折扣。而对比VR头盔,戴上头盔在眼睛可视范围内是无死角的,视场角宽度根据不同厂商生产的头盔产品从86-120°之间。

清晰度:清晰度方面没什么特殊的可比性,目前手机最大的分辨率是1920*1080,而截至目前能所了解到的顶级头盔分辨率已经达到了单眼1200*1080 的水平。所以算上双眼平均下的话好像还是高挺多的。但单从实际效果来看,头盔是有明显颗粒感,而手机是没有的。

眩晕感 :由于陀螺仪好坏直接影响用户观看影片的眩晕效果,如果使用较差的陀螺仪会让用户有呕吐的感觉,这块个人体验是VR头盔相对比较好。

二、刷面试题的软件?

1、考试云题库支持按知识点进行分类,支持多级树状子分类;支持批量修改、删除、导出。支持可视化添加试题,支持Word、Excel、TXT模板批量导入试题。有单选题、多选题、不定项选择题、填空题、判断题、问答题六种基本题型,还可以变通设置复杂组合题型,如材料题、完型填空、阅读理解、听力、视频等题型。

三、抗压力的面试题?

面试中被问到抗压力的问题时,可以针对以下问题进行回答:

1. 你对压力的看法是什么?你认为良好的压力管理对于工作与生活的重要性是什么?

2. 你曾经遇到过最大的压力是什么?你是如何处理的?取得了什么成果?

3. 你如何预防压力的堆积?平时都有哪些方法舒缓压力?

4. 你在工作中是如何处理紧急事件的?在紧急事件发生时,你又是如何平静处理的?

5. 当你感到应对不了困难时,你是如何处理自己的情绪的?是否有过跟同事或领导寻求帮助的经验?

以上问题的回答需要切实体现出应聘者的应对压力的能力、态度和方法。需要注意的是,压力是一种正常的工作与生活状态,压力管理不是要消除压力,而是要学会合理地面对与处理压力,以达到更好的工作和生活效果。

四、招聘校医的面试题?

应该是校医的工作范畴,急救处理,传染病知识和健康教育,除专业知识外还会问一些开放性的题目,好好准备下吧,祝你成功。

五、mahout面试题?

之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。

训练数据:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

检测数据:

sunny,hot,high,weak

结果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代码调用Mahout的工具类实现分类。

基本思想:

1. 构造分类数据。

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

接下来贴下我的代码实现=》

1. 构造分类数据:

在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。

数据文件格式,如D1文件内容: Sunny Hot High Weak

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 测试代码

*/

public static void main(String[] args) {

//将训练数据转换成 vector数据

makeTrainVector();

//产生训练模型

makeModel(false);

//测试检测数据

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean参数是,是否递归删除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成训练模型失败!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("检测数据构造成vectors初始化时报错。。。。");

System.exit(4);

}

}

/**

* 加载字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用贝叶斯算法开始分类,并提取得分最好的分类label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("检测所属类别是:"+getCheckResult());

}

}

六、webgis面试题?

1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。

WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。

2. 请谈谈您在WebGIS开发方面的经验和技能。

我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。

3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。

在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。

4. 请谈谈您对WebGIS未来发展的看法和期望。

我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。

七、freertos面试题?

这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。

八、vr glass和vr眼镜的区别?

VR玻璃和VR眼镜在原理和技术上有所不同。

VR玻璃是一种用于虚拟现实技术的显示设备,它通常由两块液晶屏幕组成,通过调节液晶屏幕的透光度来实现虚拟现实效果。VR玻璃需要与头显设备一起使用,将用户置身于虚拟世界中,让用户感受到立体感和沉浸感。

而VR眼镜则是一种头显设备,它是虚拟现实技术的重要组成部分。VR眼镜通过内置屏幕和光学系统,将图像和视频直接呈现在用户的眼前,从而让用户感受到身临其境的虚拟现实体验。

在技术上,VR玻璃主要依赖于屏幕的透光度和调节液晶屏幕的折射率来实现虚拟现实效果,而VR眼镜则主要依赖于内置屏幕和光学系统来实现虚拟现实效果。因此,VR玻璃和VR眼镜在实现虚拟现实技术的方式和技术上有所不同。

此外,VR玻璃和VR眼镜在使用场景和应用范围上也有所不同。VR玻璃通常用于大型的虚拟现实场馆或者商业展示等场所,而VR眼镜则更适合个人在家中或者移动设备上使用,如手机、平板电脑等。

综上所述,VR玻璃和VR眼镜虽然都是虚拟现实技术的重要组成部分,但在原理和技术上有所不同,使用场景和应用范围也有所不同。

九、180°vr和360°vr的区别?

VR眼镜看视频资源,根据视频资源的种类分为全景视频和普通视频。

全景视频就是用专有拍摄设备拍摄的360°的视频,可以转头看到不同的角度的内容。普通视频由于是用一个摄像机拍摄的(360°视频有可能使用6个或6个以上摄像机从不同角度拍摄的),所以只能看到一个大屏幕,类似于在电影院看电影的感觉。

十、htc vr跟pico vr的区别?

您好,HTC VR和Pico VR是两种不同的虚拟现实(VR)设备,它们有以下几点区别:

1. 品牌和制造商:HTC VR是由HTC(宏达国际电子股份有限公司)开发和制造的,而Pico VR则是由Pico Interactive(北京小鹏创新科技有限公司)开发和制造的。

2. 硬件规格:HTC VR设备通常具有更高的硬件规格,例如更高的分辨率、更大的视野、更高的刷新率等,以提供更高质量的虚拟现实体验。Pico VR设备则可能具有较低的硬件规格,以适应更多不同的用户和使用场景。

3. 生态系统:HTC VR设备通常使用Viveport生态系统,其中包括了大量的VR游戏和应用程序供用户选择。Pico VR设备则使用其自己的Pico Store生态系统,提供了一系列的VR内容。

4. 定位追踪技术:HTC VR设备通常采用外部定位追踪系统,例如HTC Vive的Lighthouse系统,以提供更精准的头部和手部追踪。Pico VR设备则通常采用内置的定位追踪技术,例如使用内置的传感器和摄像头来实现追踪。

总体而言,HTC VR设备通常被认为是更高端和更强大的虚拟现实解决方案,而Pico VR设备则更注重便携性和易用性,适合更多不同的用户和使用场景。

相关资讯
热门频道

Copyright © 2024 招聘街 滇ICP备2024020316号-38