高压风机的叶轮由数十片叶片组成,它类似庞大的气轮机的叶轮。叶轮叶片中间的空气受到了离心力的作用,向叶轮的边缘运动,在那里空气进入泵体环行空腔,重新从叶片的起点以同样的方式再进行循环。
叶轮旋转所产生的循环气流,以极高的能量离开气泵以供使用。风机采用专用电机,结构紧凑,体积小,重量轻,噪音低,送出气源无水无油。
特高压电网,指1000千伏的交流或800千伏的直流电网。输电电压一般分高压、超高压和特高压。国际上,高压(HV)通常指35~220kV的电压;超高压(EHV)通常指330kV及以上、1000kV以下的电压;特高压(UHV)指1000kV及以上的电压。高压直流(HVDC)通常指的是600kV及以下的直流输电电压,800 kV以上的电压称为特高压直流输电(UHVDC)。
我国目前绝大多数电网来说,高压电网指的是110kV和220kV电网;超高压电网指的是330kV,500kV和750kV电网。特高压输电指的是正在开发的1000 kV交流电压和800kV直流电压输电工程和技术。特高压电网指的是以1000kV输电网为骨干网架,超高压输电网和高压输电网以及特高压直流输电高压直流输电和配电网构成的分层、分区、结构清晰的现代化大电网。
特高压电网形成和发展的基本条件是用电负荷的持续增长,以及大容量、特大容量电厂的建设和发展,其突出特点是大容量、远距离输电。目前,中国的长距离输电和世界其他国家一样,主要用500千伏的交流电网,只在俄罗斯、日本、意大利有少量1000千伏交流线路,且都降压运行。
你好,超高压离线导入是指在离线状态下,将数据导入到超高压电网管理系统中。这种方式一般用于大规模的数据导入,例如导入电网设备的运行参数、实时监测数据等。
离线导入的优点是可以避免实时导入时由于网络延迟等原因导致数据传输失败的问题,同时也可以避免实时导入时对系统性能的影响。另外,离线导入还可以在系统负载较低的时候进行,避免对系统其他功能的影响。
超高压离线导入需要先将数据从外部数据源(如Excel、数据库等)中提取出来,然后通过特定的接口将数据导入到超高压电网管理系统中。在进行离线导入时,需要注意数据的准确性和完整性,以避免导入错误或遗漏数据的情况。
首先不说超高压输电技术,何为输电技术?输电就是将发电厂发出来的电通过电网传输到居民、工厂、商场、学校、医院等。超高压输电是指输送电压在500KV-1000KV之间的电压等级输送电能。
超高压输电技术讲解
超高电压有多个等级:330KV、400KV、500KV、765KV等。随着发电容量及用电负荷的增长及输电距离延长使得超高压输电成为必须要解决的问题。超高压输电可以增大输送容量、延长传输距离、降低工程造价、减少线路损耗等。
超高压输电技术讲解
超高压输电技术须解决超高压运行条件下空气及其他介质的绝缘强度特性研究,合理设计输电线路及输电设备绝缘配合与绝缘水平,对内部过电压和外部过电压进行预测及防护,还需解决保持同步发电机并列运行的稳定性问题。解决超高压输电线路引起的电磁环境干扰,各种运行方式下的调压和无功功率补。偿。当前我国超高压输电技术运营成熟。
超高压输电技术讲解
超高压输电技术讲解
超高压输电技术讲解
从来就没有武汉超高压局,只有湖北超高压局,在汉阳五里墩。
也早就没有武汉超高压研究所了,很早就叫武汉高压研究院,去年又合并南京的自动化院,现在叫国家电网电力科学研究院。
地点在珞瑜路,鲁巷广场往东一点
之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。
训练数据:
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
检测数据:
sunny,hot,high,weak
结果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代码调用Mahout的工具类实现分类。
基本思想:
1. 构造分类数据。
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
接下来贴下我的代码实现=》
1. 构造分类数据:
在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。
数据文件格式,如D1文件内容: Sunny Hot High Weak
2. 使用Mahout工具类进行训练,得到训练模型。
3。将要检测数据转换成vector数据。
4. 分类器对vector数据进行分类。
这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 测试代码
*/
public static void main(String[] args) {
//将训练数据转换成 vector数据
makeTrainVector();
//产生训练模型
makeModel(false);
//测试检测数据
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//将测试数据转换成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失败!");
System.exit(1);
}
//将序列化文件转换成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件转换成向量失败!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean参数是,是否递归删除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean参数是,是否递归删除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成训练模型失败!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("检测数据构造成vectors初始化时报错。。。。");
System.exit(4);
}
}
/**
* 加载字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用贝叶斯算法开始分类,并提取得分最好的分类label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("检测所属类别是:"+getCheckResult());
}
}
1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。
WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。
2. 请谈谈您在WebGIS开发方面的经验和技能。
我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。
3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。
在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。
4. 请谈谈您对WebGIS未来发展的看法和期望。
我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。
这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。
英文缩写:uhp
英文全称:Ultra High Pressure
中文音译:超高圧力
超高压力范围系指高于600MPa,在1GPa以上的压力。超高压力技术包括超高压的产生技术、超高压测试技术和超高压应用技术等。
超高压力测试系统为某爆破测试设计,系统用于在船上检测爆破所产生的多种信号。本系统采用MAC Panel互联接口,使得设备的整体外观和设备的可靠性都有了提升。
超高压技术是包括超高压力的产生、控制和测量的研究,其测量装置(包括数据处理系统)的性能,又直接影响着超高压力的产生和控制。
超高压冷冻技术是指根据超高压下冰点下降和压力瞬间传递原理,将高水分物料加压至200 Mpa以上压力后,冷却至一20℃,然后立即降压至常压。
此时0℃ 为冰点,一20℃的水变为不稳定的过冷态,瞬间产生大量细小冰晶均布于冻品组织中,使冷冻应力大大减少,避免了冻品组织的破坏和变性,从而真正实现了速冻。 利用低温超高压下水的冻结点的下降,可以将超高压技术用于食品或生物制品的速冻以及冷却冷藏等。从目前对超高压技术的研究来看,低温范围内的超高压加工已成为该技术研究的一个重要方向。
因此了解、研究超高压技术对低温食品的影响,对提高我国食品企业的国际竞争力和产品的科技含量具有重要意义。