什么是行政机关?行政机关包括哪些单位?

时间:2024-10-15 16:16 人气:0 编辑:招聘街

一、什么是行政机关?行政机关包括哪些单位?

我国行政机关包括中央行政机关和地方行政机关两级。

中央行政机关有国务院、国务院组成部门(包括各部、委员会、中国人民银行和审计署)、国务院直属机构(如海关、税务、工商、环保总局等)等组成。

地方行政机关包括地方各级人民政府、县级以上人民政府组成部门(如民政局,劳保局,卫生局,审计局等等)。

县级以上人民政府的直属机构和特设机构(如工商,质量监督,环保,药监局等)、以及各级人民政府的派出机构(包括区公署,区公所,街道办事处)。

特别提醒,公安局的地位比较特殊,既是一级行政机关,又是司法机关,根据其行使的具体职能确定。

扩展资料:

行政机关是指依法行使国家权力、执行国家行政职能的机关。

从广义上讲,行政机关是一级政府机关的总称,即国家政权组织中执行国家法律,从事国家政务、机关内部事务和社会公共事务管理的政府机关及其工作部门。

从狭义上讲,行政机关仅指政府机关内部的综合办事机构,即办公厅(室),它是在行政首长直接领导下处理各种事务、辅助进行全面管理工作的机构。

各级行政机关即各级人民政府,是国家行政管理的主体,从行政体制和机构编制管理来说,国家行政机关也是各类机关中职能最复杂、机构设置最多、工作人员最多、规模最大的机关。

国家行政机关从上到下分为国务院、省、市、县、乡镇五级政府,各级政府还设置了各种机构。这里重点介绍中央人民政府。

国务院组成部门,即各部、委员会、人民银行、审计署。组成部门依法履行国务院

基本的行政管理职能,可在本部门的权限内发布命令、指示和规章。

国务院组成部门的内部,按业务分工设立职能机构,通常设置厅、司(局)。

厅是“办公厅”,是协助部门领导工作并综合协调部内事务的机构。

分管各项业务的机构称“司”,也有极少数内设机构因业务具有相对独立的对外职能或历史原因而称为“局”。

组成部门的内设司(局)的数量多少根据需要确定,司局以下设立处(室)。

二、什么是行政机关?行政机关包括哪些单位?

行政机关以及包括的单位

行政机关是指依法行使国家权力、执行国家行政职能的机关。从广义上讲,行政机关是一级政府机关的总称,即国家政权组织中执行国家法律,从事国家政务、机关内部事务和社会公共事务管理的政府机关及其工作部门。从狭义上讲,行政机关仅指政府机关内部的综合办事机构,即办公厅(室),它是在行政首长直接领导下处理各种事务、辅助进行全面管理工作的机构。

中央行政机关:国务院、办公厅、直属机构、办事机构、部管局、事业单位(新华通讯社、中国科学院、中国社会科学院、中国工程院、国务院发展研究中心、国家行政学院、中国地震局、中国气象局等单位)

地方各级行政机关:地方各级人民政府、地方各级人民政府的职能部门、地方各级人民政府的派出机关。

三、行政机关包括哪些部门

行政机关包括哪些部门

每个国家都有一套行政管理体系,以确保国家的正常运转和公共利益的维护。行政机关是其中的重要组成部分,它们负责管理和执行政府的各项政策和法规。那么,行政机关包括哪些部门呢?本篇文章将对此进行详细探讨。

1. 内政部门

内政部门是行政机关中的重要一环,负责国家的内部事务管理和公共安全维护。它涵盖了广泛的领域,包括但不限于警察部门、消防部门、民政部门、移民局和法院系统等。警察部门负责维护社会治安和打击犯罪活动,消防部门负责防火救灾和保障公共安全,民政部门负责社会救助和社会管理,移民局负责管理移民事务,法院系统负责司法审判和法律实施。

2. 财政部门

财政部门负责国家财政管理和税务征收。它的主要职责包括制定财政政策、规划财政预算、管理税收和监督资金使用等。财政部门的工作对于国家的经济运行和财政稳定至关重要。它还承担着税收政策的调整和优化,以及对经济活动的监管和评估等职责。

3. 教育部门

教育部门是负责国家教育事务的行政机关部门。它的任务是制定教育政策、规划教育发展、管理教育资源和监督教育质量。教育部门也负责招生考试的组织和管理工作,以及对教师队伍的培养和管理。教育事业对于一个国家的发展和未来至关重要,因此教育部门的工作具有重大意义。

4. 卫生部门

卫生部门是负责公共卫生事务管理的行政机关部门。它的职责包括制定卫生政策、组织疾病预防和控制工作、建立卫生监测体系、管理医疗保健机构和药品监管等。卫生部门是保障国民健康的重要力量,通过预防疾病的传播和控制,提高医疗保健服务的质量和效率,为人民的生命安全和身体健康提供保障。

5. 经济发展部门

经济发展部门负责国家经济的规划和发展。它的主要职责包括制定经济政策、促进产业发展、推动国内外贸易、吸引外商投资和推动科技创新等。经济发展部门还负责推动区域经济的协调发展和提升国家整体竞争力。经济发展是一个国家长期稳定发展的基础,因此该部门的工作至关重要。

6. 文化部门

文化部门负责国家文化事务的管理和传承。它致力于保护和发展国家的文化遗产,推动文化创意产业的发展,丰富人民的文化生活。文化部门负责博物馆、图书馆、文化艺术表演机构等的管理,组织文化活动和节日庆典,并对文化产业进行规划和指导。文化是一个国家软实力的重要体现,文化部门的工作对于国家形象和民族精神的传承至关重要。

7. 环境保护部门

环境保护部门负责保护和管理环境资源,保障生态环境的可持续发展。它的职责包括制定环境保护政策、监测环境污染、推动节能减排和环境修复等。环境保护部门还负责管理自然保护区和生态保护区,保护濒危物种和生态系统的完整性。环境问题是全球面临的重大挑战,环境保护部门的工作具有重要的战略意义。

综上所述,行政机关包括内政部门、财政部门、教育部门、卫生部门、经济发展部门、文化部门和环境保护部门等。这些部门的工作相互配合,共同为实现国家的发展和公共利益的维护做出贡献。

四、mahout面试题?

之前看了Mahout官方示例 20news 的调用实现;于是想根据示例的流程实现其他例子。网上看到了一个关于天气适不适合打羽毛球的例子。

训练数据:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

检测数据:

sunny,hot,high,weak

结果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代码调用Mahout的工具类实现分类。

基本思想:

1. 构造分类数据。

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

接下来贴下我的代码实现=》

1. 构造分类数据:

在hdfs主要创建一个文件夹路径 /zhoujainfeng/playtennis/input 并将分类文件夹 no 和 yes 的数据传到hdfs上面。

数据文件格式,如D1文件内容: Sunny Hot High Weak

2. 使用Mahout工具类进行训练,得到训练模型。

3。将要检测数据转换成vector数据。

4. 分类器对vector数据进行分类。

这三步,代码我就一次全贴出来;主要是两个类 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 测试代码

*/

public static void main(String[] args) {

//将训练数据转换成 vector数据

makeTrainVector();

//产生训练模型

makeModel(false);

//测试检测数据

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//将测试数据转换成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失败!");

System.exit(1);

}

//将序列化文件转换成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件转换成向量失败!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean参数是,是否递归删除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean参数是,是否递归删除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成训练模型失败!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("检测数据构造成vectors初始化时报错。。。。");

System.exit(4);

}

}

/**

* 加载字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加载df-count目录下TermDoc频率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1时表示总文档数

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要从dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用贝叶斯算法开始分类,并提取得分最好的分类label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("检测所属类别是:"+getCheckResult());

}

}

五、webgis面试题?

1. 请介绍一下WebGIS的概念和作用,以及在实际应用中的优势和挑战。

WebGIS是一种基于Web技术的地理信息系统,通过将地理数据和功能以可视化的方式呈现在Web浏览器中,实现地理空间数据的共享和分析。它可以用于地图浏览、空间查询、地理分析等多种应用场景。WebGIS的优势包括易于访问、跨平台、实时更新、可定制性强等,但也面临着数据安全性、性能优化、用户体验等挑战。

2. 请谈谈您在WebGIS开发方面的经验和技能。

我在WebGIS开发方面有丰富的经验和技能。我熟悉常用的WebGIS开发框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能够使用HTML、CSS和JavaScript等前端技术进行地图展示和交互设计,并能够使用后端技术如Python、Java等进行地理数据处理和分析。我还具备数据库管理和地理空间数据建模的能力,能够设计和优化WebGIS系统的架构。

3. 请描述一下您在以往项目中使用WebGIS解决的具体问题和取得的成果。

在以往的项目中,我使用WebGIS解决了许多具体问题并取得了显著的成果。例如,在一次城市规划项目中,我开发了一个基于WebGIS的交通流量分析系统,帮助规划师们评估不同交通方案的效果。另外,在一次环境监测项目中,我使用WebGIS技术实现了实时的空气质量监测和预警系统,提供了准确的空气质量数据和可视化的分析结果,帮助政府和公众做出相应的决策。

4. 请谈谈您对WebGIS未来发展的看法和期望。

我认为WebGIS在未来会继续发展壮大。随着云计算、大数据和人工智能等技术的不断进步,WebGIS将能够处理更大规模的地理数据、提供更丰富的地理分析功能,并与其他领域的技术进行深度融合。我期望未来的WebGIS能够更加智能化、个性化,为用户提供更好的地理信息服务,助力各行各业的决策和发展。

六、freertos面试题?

这块您需要了解下stm32等单片机的基本编程和简单的硬件设计,最好能够了解模电和数电相关的知识更好,还有能够会做操作系统,简单的有ucos,freeRTOS等等。最好能够使用PCB画图软件以及keil4等软件。希望对您能够有用。

七、paas面试题?

1.负责区域大客户/行业客户管理系统销售拓展工作,并完成销售流程;

2.维护关键客户关系,与客户决策者保持良好的沟通;

3.管理并带领团队完成完成年度销售任务。

八、面试题类型?

你好,面试题类型有很多,以下是一些常见的类型:

1. 技术面试题:考察候选人技术能力和经验。

2. 行为面试题:考察候选人在过去的工作或生活中的行为表现,以预测其未来的表现。

3. 情境面试题:考察候选人在未知情境下的决策能力和解决问题的能力。

4. 案例面试题:考察候选人解决实际问题的能力,模拟真实工作场景。

5. 逻辑推理题:考察候选人的逻辑思维能力和分析能力。

6. 开放性面试题:考察候选人的个性、价值观以及沟通能力。

7. 挑战性面试题:考察候选人的应变能力和创造力,通常是一些非常具有挑战性的问题。

九、cocoscreator面试题?

需要具体分析 因为cocoscreator是一款游戏引擎,面试时的问题会涉及到不同的方面,如开发经验、游戏设计、图形学等等,具体要求也会因公司或岗位而异,所以需要根据实际情况进行具体分析。 如果是针对开发经验的问题,可能会考察候选人是否熟悉cocoscreator常用API,是否能够独立开发小型游戏等等;如果是针对游戏设计的问题,则需要考察候选人对游戏玩法、关卡设计等等方面的理解和能力。因此,需要具体分析才能得出准确的回答。

十、mycat面试题?

以下是一些可能出现在MyCat面试中的问题:

1. 什么是MyCat?MyCat是一个开源的分布式数据库中间件,它可以将多个MySQL数据库组合成一个逻辑上的数据库集群,提供高可用性、高性能、易扩展等特性。

2. MyCat的优势是什么?MyCat具有以下优势:支持读写分离、支持分库分表、支持自动切换故障节点、支持SQL解析和路由、支持数据分片等。

3. MyCat的架构是怎样的?MyCat的架构包括三个层次:客户端层、中间件层和数据存储层。客户端层负责接收和处理客户端请求,中间件层负责SQL解析和路由,数据存储层负责实际的数据存储和查询。

4. MyCat支持哪些数据库?MyCat目前支持MySQL和MariaDB数据库。

5. MyCat如何实现读写分离?MyCat通过将读请求和写请求分别路由到不同的MySQL节点上实现读写分离。读请求可以路由到多个只读节点上,从而提高查询性能。

6. MyCat如何实现分库分表?MyCat通过对SQL进行解析和路由,将数据按照一定规则划分到不同的数据库或表中,从而实现分库分表。

7. MyCat如何保证数据一致性?MyCat通过在多个MySQL节点之间同步数据,保证数据的一致性。同时,MyCat还支持自动切换故障节点,从而保证系统的高可用性。

8. MyCat的部署方式有哪些?MyCat可以部署在单机上,也可以部署在多台服务器上实现分布式部署。

相关资讯
热门频道

Copyright © 2024 招聘街 滇ICP备2024020316号-38